§ 12 Нуклеиновые кислоты и их роль в жизнедеятельности клетки - Глава1.Основы цитологии - Каталог статей - Общая биология 10-11 классы
Главная | Регистрация | Вход | RSSВторник, 06.12.2016, 15:10

Биология 10-11 класс

Меню сайта
Категории раздела
Введение [30]
Глава1.Основы цитологии [16]
Глава 2.Размножение и индивидуальное развитие организмов [14]
Глава 3. Основы генетики [16]
Глава 4. Генетика человека [12]
Глава 5.Основы учения об эволюции [11]
Глава 6. Основы селекции и биотехнологии [10]
Глава 7. Антропогенез [11]
Глава 8. Основы экологии [10]
Глава 9. Эволюция биосферы и человек [11]
Биологический словарь на букву "А" [54]
Биологический словарь на букву "Б" [56]
Глава 10.Морфология и структурная организация бактериальной клетки [49]
Глава 11.О чем умолчали учебники [36]
7 [18]
Категории раздела
Введение [30]
Глава1.Основы цитологии [16]
Глава 2.Размножение и индивидуальное развитие организмов [14]
Глава 3. Основы генетики [16]
Глава 4. Генетика человека [12]
Глава 5.Основы учения об эволюции [11]
Глава 6. Основы селекции и биотехнологии [10]
Глава 7. Антропогенез [11]
Глава 8. Основы экологии [10]
Глава 9. Эволюция биосферы и человек [11]
Биологический словарь на букву "А" [54]
Биологический словарь на букву "Б" [56]
Глава 10.Морфология и структурная организация бактериальной клетки [49]
Глава 11.О чем умолчали учебники [36]
7 [18]
Наш опрос
Оцените мой сайт
Всего ответов: 40
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа

Каталог статей

Главная » Статьи » Глава1.Основы цитологии

§ 12 Нуклеиновые кислоты и их роль в жизнедеятельности клетки
1. Какова роль ядра в клетке?
2. С какими органоидами клетки связана передача наследственных признаков?
3. Какие вещества называются нуклеиновыми кислотами?
Нуклеиновые кислоты и их типы. Нуклеиновые кислоты — самые крупные из молекул, образуемых живыми организмами. Их молекулярная масса может быть от 10 ООО до нескольких миллионов углеродных единиц.
Так как наиболее высокое содержание нуклеиновых кислот обнаружено в ядрах клеток, то они и получили свое название от латинского «нуклеус» — ядро. Хотя теперь выяснено, что нуклеиновые кислоты есть и в цитоплазме, и в целом ряде органоидов — митохондриях, пластидах.
Нуклеиновые кислоты являются биополимерами, состоящими из мономеров — нуклеотидов. Каждый нуклеотид состоит из фосфатной группы, пятиуглеродного сахара (пентозы) и азотистого основания (рис. 17).
Остаток фосфорной кислоты, связанный с пятым атомом С в пен-тозе, может соединяться ковалентной связью с гидроксильной группой возле третьего атома С другого нуклеотида. Обратите внимание: концы цепочки нуклеотидов, связанных в нуклеиновую кислоту, разные. На одном конце расположен связанный с пятым атомом пентозы фосфат, и этот конец называется 5'-концом (читается «пять-штрих»). На другом конце остается не связанная с фосфатом ОН-группа около третьего атома пентозы (З'-конец). Благодаря реакции полимеризации нуклеотидов образуются нуклеиновые кислоты (рис. 18).
Рис. 17. Общая формула нуклеотида
В зависимости от вида пентозы различают два типа нуклеиновых кислот — дезоксирибонуклеиновые (сокращенно ДНК) и рибонуклеиновые (РНК). Название кислот обусловлено тем, что молекула ДНК содержит дезоксирибозу, а молекула РНК — рибозу.
5'-конец
Сг
I
О-— Р = О
о
I
О
Н2С

н
О
I
I
О
3-конец

о
н
н он
о

3-конец
Строение ДНК. Молекула ДНК имеет сложное строение. Она состоит из двух спирально закрученных цепей, которые по всей длине соединены друг с другом водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью.
Нуклеотиды, входящие в состав ДНК, содержат дезоксирибозу, остаток фосфорной кислоты и одно из четырех азотистых оснований: аденин, гуанин, цитозин и тимин. Они и определяют названия соответствующих нуклеотидов: адениловый (А), гуаниловый (Г), цитидиловый (Ц) и тимидиловый (Т) (рис. 18).
Каждая цепь ДНК представляет полинуклеотид, который может состоять из нескольких десятков тысяч и даже миллионов нуклеотидов. Нуклеотиды, входящие в состав одной цепи, последовательно соединяются за счет образования ковалентных связей между дезокси-рибозой одного и остатком фосфорной кислоты другого нуклеотида. Азотистые основания, которые располагаются по одну сторону от образовавшегося остова одной цепи ДНК, формируют водородные связи с азотистыми основаниями второй цепи. Таким образом, в спиральной молекуле двухцепочечной ДНК азотистые основания находятся внутри спирали. Структура спирали такова, что входящие в ее состав по-линуклеотидные цепи могут быть разделены только после раскручивания спирали (рис. 18).
В двойной спирали ДНК азотистые основания одной цепи распола-гаются в строго определенном порядке против азотистых оснований другой. Между аденином и тимином всегда возникают две, а между гуанином и цитозином — три водородные связи. В связи с этим обна-руживается важная закономерность: против аденина одной цепи всегда располагается тимин другой цепи, против гуанина — цитозин и наоборот. Таким образом, пары нуклеотидов аденин и тимин, а также гуанин и цитозин строго соответствуют друг другу и являются дополнительными (пространственное взаимное соответствие), или комплементарными (от лат. complementum — дополнение).
Следовательно, у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых — числу цитиди-ловых. А зная последовательность расположения нуклеотидов в одной цепи ДНК по принципу комплементарности, можно установить нуклеотиды другой цепи.
Структура каждой молекулы ДНК строго индивидуальна и специфична, так как представляет собой кодовую форму записи биологической информации (генетический код). Другими словами, с помощью четырех типов нуклеотидов в ДНК записана вся важная информация об организме, передающаяся по наследству последующим поколениям.
Молекулы ДНК в основном находятся в ядрах клеток, но небольшое их количество содержится в митохондриях и пластидах.
Строение РНК. Молекула РНК в отличие от молекулы ДНК — полимер, состоящий из одной цепочки значительно меньших размеров.
Мономерами РНК являются нуклеотиды, состоящие из рибозы, остатка фосфорной кислоты и одного из четырех азотистых оснований. Три азотистых основания — аденин, гуанин и цитозин — такие же, как и у ДНК, а четвертым является урацил (рис. 19).
Образование полимера РНК происходит так же, как и у ДНК, через ковалентные связи между рибо-зой и остатком фосфорной кислоты соседних нуклеотидов. Молекула РНК может содержать от 75 до 10 ООО нуклеотидов.
Типы РНК. Выделяют три основных типа РНК, различающихся по структуре, величине молекул, расположению в клетке и выполняемым функциям.
Рибосомные РНК (рРНК) синтезируются в основном в ядрышке и составляют примерно 85% всех РНК клетки. Они входят в состав рибосом и участвуют в формировании активного центра рибосомы, где происходит процесс биосинтеза белка.
Транспортные РНК (тРНК) образуются в ядре на ДНК, затем переходят в цитоплазму. Они составляют около 10% клеточной РНК и являются самыми небольшими по размеру РНК, состоящими из 70— 100 нуклеотидов. Каждая тРНК присоединяет определенную аминокислоту и транспортирует ее к месту сборки полипептида в рибосоме.
Все известные тРНК за счет комплементарного взаимодействия об-разуют вторичную структуру, по форме напоминающую лист клевера. В молекуле тРНК есть два активных участка: триплет-антикодон на одном конце и акцепторный конец на другом (рис. 20).
Каждой аминокислоте соответствует комбинация из трех нуклеотидов — триплет. Кодирующие аминокислоты триплеты — кодоны ДНК — передаются в виде информации триплетов (кодонов) иРНК. У верхушки клеверного листа располагается триплет нуклеотидов, который комплементарен соответствующему кодону иРНК. Этот триплет различен для тРНК, переносящих разные аминокислоты, и кодирует именно ту аминокислоту, которая переносится данной тРНК.
Антикодон Он получил название антико-
дон.
Акцепторный конец является «посадочной площадкой» для ами-нокислоты.
ч У
А\ У
А У
У А
ц Г
и г
г ц
ц г
А ф
ц
ц
А
он
Информационные, или матричные, РНК (иРНК) со-ставляют около 5% всей клеточной РНК. Они синтезируются на участке одной из цепей молекулы ДНК и передают информацию о структуре белка из ядра клеток к рибосомам, где эта информация реализуется. В зависимости от объема копируемой информации молекула иРНК может иметь различную длину.
Акцепторный
конец I
Рис. 20. Схема строения тРНК
Таким образом, различные типы. РНК представляют собой единую функциональную систему, направленную на реализацию наследственной информации через синтез белка. Молекулы РНК находятся в ядре, цитоплазме, рибосомах, митохондриях и пластидах клетки.
Все типы РНК, за исключением генетической РНК вирусов, не способны к самоудвоению и самосборке.

Нуклеиновая кислота. Нуклеотид. Дезоксирибонуклеино-вая кислота, или ДНК. Рибонуклеиновая кислота, или РНК. Азотистые основания: аденин, гуанин, цитозин, тимин, урацил. Комплементарностъ. Транспортная РНК (тРНК). Рибосомная РНК (рРНК). Информационная РНК (иРНК).
1. Какое строение имеет нуклеотид?
2. Какое строение имеет молекула ДНК?
3. В чем заключается принцип комплементарности?
4. Что общего и какие различия имеются в строении молекул ДНК и РНК?
5. Какие типы молекул РНК вам известны? Какова их функция?






Категория: Глава1.Основы цитологии | Добавил: mig (28.11.2009)
Просмотров: 5625 | Комментарии: 3 | Рейтинг: 3.0/6
Всего комментариев: 3
3  
почему преподаватели считают,что говоря научным языком,все понятно...Эхх,как и в школе,так и в колледже я до сих пор не понимаю биологию...

2  
мне нравится, но зачем размещать в интернет что и так написана в учебнике
какой от это-го толк. Скажи те мне?

1  
75547545454545577774

Имя *:
Email *:
Код *:
Поиск
Друзья сайта
  • Здесь могла быть ваша реклама

  • Ставки на спорт
    Copyright MyCorp © 2016
    Конструктор сайтов - uCoz